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ABSTRACT

We present an original method for reconstruction of hy-

perspectral objects (two spatial and one spectral dimensions)

from data provided by the infrared slit spectrograph on board

the Spitzer Space Telescope. The originality of the work lies

in the fact that both measurementmodel and inversionmethod

are tackled in continuous (spatial and spectral) variables. The

method is built in a deterministic regularization framework

and enable to achieve both deconvolution and over-resolution.

Results show that the method is able to evidence spatial struc-

tures not detectable by means of conventional methods. The

spatial resolution is shown to be improved by a factor 1.5. We

discuss our data processing approach for the new generation

of infrared to millimeter space observatories launched in 2009

(Herschel and Planck).

1. INTRODUCTION

The aim of the spectral imaging work presented here is to

reconstruct over-resolved objects with two spatial (angular)

dimensions (α, β) and one spectral dimension λ. The work is
illustrated thanks to the data provided by the Infrared Spec-

trograph (IRS) [1] on board the american Spitzer Space Tele-

scope launched in 2003.

Data were acquired by means of a slit spectrograph, de-

scribed in detail in part 2. Telescope pointing selects a di-

rection of space α by means of the slit. The photon flux is

then dispersed by a diffraction grating. Information about the

spatial dimension α and the spectral dimension λ is thus ac-

quired. The second spatial dimension β results form sky scan-

ning (modification of telescope pointing).

The optical behaviour of the system is a function of the

wavelength, so, natural data resolution is wavelength depen-

dent (see Eq. (1)). Moreover, a phenomenon of spectral alias-

ing also appears for the shortest wavelengths.

The problem to be solved is thus one of inverting spec-

tral aliasing (i.e., over-resolution [2]) based on a finite num-

ber of discrete data provided by a complex system. The pro-

posed solution relies on a precise instrument model (optics

0J.-F. Giovannelli is in the Laboratoire de l’Intégration du Matériau au
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and sensing) based on integral equations w.r.t. the continuous

variables (α, β and λ). The model input is naturally a contin-

uous variable object φ(α, β, λ) and the output is a finite set

y of discrete data items. The inverse problem, i.e., object re-

constructing with three continuous variables from the discrete

data comes within the regularization framework. It is founded

on penalization by uses of a semi-parametric format based on

object decomposed into a family of functions.

The major contribution of the paper relies on a continuous

variable framework:

1. a model for the entire measurement system w.r.t. con-

tinuous variables enables a faithful description of the

physical phenomena involved in the acquisition.

2. a continuous variable inversion method based on penal-

ization in order to favour smooth solutions.

Computing the model output requires six integrals (two for

the response of the optics, two for the grating response, and

two for the sensor integration) and the decomposition of the

three dimensional object over a family of Gaussian functions

allows five of these six integrals to be explicitly stated.

2. CONTINUOUS DIRECT MODEL

The aim of the instrument model is to reproduce the data, y,

acquired by the imager for a given incoherent flux φ(α, β, λ).
It includes: (1) primary mirror (aperture), (2) truncation due

to a rectangular slit, (3) dispersion by a grating and (4) dis-

tortion and sensor integration. The total model provides the

discrete data y details is given in [3].

Aperture diffraction — Under standard hypotheses, the

propagation of a light wave through an aperture is described

by FRESNEL diffraction: it is modeled as a convolution of the

input flux φ and the well-known Airy Point Spread Function

(PSF) noted ha. In the focal plane, the flux φf , is then written

in integral form

φf (α′, β′, λ) =

∫∫

φ(α, β, λ)ha(α − α′, β − β′, λ) dαdβ

(1)



Slit and diffraction grating — Ideally, the grating gives a

diffracted wave with an output angle θ linearly dependent on

the wavelength λ. In a more accurate model, the dependence

becomes more complex. The response of the grating centred

on mode m (m = 0, 1, . . . ) can, with some approximations,

be written as a squared cardinal sine centred on m/a

hr(θ, β
′, λ) = B sinc 2

(

πL
(

(θ − λ − m/a
)

)

where L is the width of the grating and a the grid step (dis-

tance between grooves). Since the flux is incoherent, the out-

put of the grating writes as an integral over β′ and λ

φr(α
′, θ) =

∫ ∫

|β′|≤γ/2

φf (α′, β′, λ)hr(β
′, λ, θ) dβ′dλ

(2)

where γ is the angular slit width (5.6 arcseconds).

Sensor integration — After dispersion through the grating

according to the wavelengths, the flux is focused on the sen-

sor. It is composed of square detectors and modelled by inte-

gration of the flux φr on square areas of side d

y(i, j) =

∫ (i+1)d

id

∫ (j+1)d+e2

ij

jd+e1

ij

φr(α
′, θ) dα′dθ. (3)

The integration limits are modified by the en
ij in order account

for flux distortions.

Complete model — Combining (1), (2) and (3) yields a con-

tinuous model:

y(i, j, q) = A

∫∫ ∫∫ ∫∫

φ(α − ∆α(q), β − ∆β(q), λ)

ha(α − α′, β − β′, λ) dαdβ hr(θ, β
′, λ) dβ′dλdα′dθ (4)

for the instrument, where
(

∆α(q), ∆β(q)
)

is the pointed di-

rection andA is a scale factor.

We then have developed a model linking the continuous

object φ(α, β, λ) and discrete data. It is linear but non shift

invariant due to grating output dependence on the wavelength.

3. DECOMPOSITION OVER A FAMILY AND

GAUSSIAN APPROXIMATION

Now we have a direct model that describes the data acquisi-

tion from sky. To get a good representation of the information

restored by the method, the sky model needs to be adapted.

On the opposite, a good choice of the sky model in combi-

nation of the direct model equation can reduce the amount of

computation necessary to simulate a data acquisition. These

constraints led us to consider band limited functions class for

φ. This class of functions can be represented without loose of
information with the base of sinus cardinal functions. In this

case the sampling period and the width of the sinus cardinal

are fixed by the frequency limit.

The fact that the method aim to restore a sky with im-

proved resolution led us to fix the frequency limit greater than

the cut off frequency of the sensor. The choice of the fre-

quency limit is still an open question. It’s depend on the sam-

pling frequency of the sensor, the acquisition protocol or the

potential of the method. We fix this value to approximately

twice the natural sampling frequency of the sensor since the

shift between two acquisitions are the half of the slit width.

If we chose the sinus cardinal decomposition, the com-

putation of the direct model becomes very prohibitive. Con-

sequently, in conjunction of the approximation of the direct

model equation, we choose Gaussian functions in spatial di-

mension that best approximate the corresponding sinc func-

tions. This allow explicit resolution of the integral in the di-

rect model.

Decomposition over a family of Gaussian functions — The

flux φ is a continuous function decomposed over a family of

separable functions:

φ(α, β, λ) =
∑

k,l,m

x(k, l, p)

Π(α − kTα)Φ(β − lTβ) Γ(λ − pTλ)

where x(k, l, p) are the decomposition coefficients, Tα, Tβ ,

Tλ and σ are determined by the frequency limit and

Π(α)Φ(β) =
1

2πσ2
exp

(

−
1

2

α2 + β2

σ2

)

(5)

Γ(λ) = δ(λ). (6)

With such decomposition, the inverse problem becomes one

of estimating a finite number of coefficients x(k, l, p) from

discrete data. If the y(i, j, q) and x(k, l, p) are gathered in

vectors y and x respectively, the equation (4) can be formal-

ized as a vector matrix product y = Hx.

Gaussian approximation of impulse responses — Equation

(1) comes down to convolutions of a squared Bessel func-

tion and Gaussians. This integral is not explicit and, in order

to carry out the calculations, the PSF is approximated by a

Gaussian with a standard deviation σλ ≈ λ/2. The relative

error errLk = ‖Bessel− Gaussian‖k / ‖Bessel‖k is small

(errL2 = 0.15%, errL1 = 5 %). We can conclude that most

of the energy of the squared Bessel function is localized in

the primary lobe. Finally, the result of the convolution of two

Gaussian functions is a standard one and is also a Gaussian.

The presence of the slit means that integral (2) is bounded

over β′ and is not easily calculable. Since the preceding

expressions use Gaussian functions, we approximate the

squared cardinal sine by a Gaussian to make the calcu-

lations easier: σs is determined numerically by minimiz-

ing the quadratic error between the Gaussian kernel and

the squared cardinal sine, which gives for our instrument

σs ≈ 25.5 m−1. The relative errors made are larger than



the Bessel case (errL2 = 0.43%, errL1 = 10.7 %), but this

Gaussian approximation of the grating response allows the

flux φr coming out of the grating to be known explicitly.

4. INVERSION

The previous sections build the relationship between the ob-

ject coefficients and the data. The problem of input (object)

reconstruction is a typical ill-posed inverse problem and the

literature on the subject is abundant. We want to reconstruct

relatively smooth objects (clouds of galactic dust). To do this,

we introduce an a priori smoothness through a penalty term

(the last term of the Eq. (7)).

The proposed inversion method resorts to linear process-

ing. It is based on conventional approaches described in

books such [4]. These methods rely on a quadratic criterion

J(x) = ||y − Hx||2 + µαβ ||Dαβx||2 + µλ||Dλx||2 . (7)

It involves a least squares term and two penalize terms Dαβ

and Dλ concerning the differences between neighbouring co-

efficients: one for the two spatial dimensions and one for the

spectral dimension. They are weighted by µαβ and µλ, re-

spectively. The estimate x̂ is chosen as the minimizer of this

criterion. It is thus explicit and linear with respect to the data

x̂ =
(

HtH + µαβDt
αβDαβ + µλDt

λDλ

)−1
Hty (8)

In practice, it cannot be calculated on standard computers,

because the matrix to be inverted is too large. The solution x̂

is therefore computed by a numerical optimization algorithm.

Practically, the optimization relies on a standard gradient de-

scent algorithm. More precisely, the direction descent is a

approximate conjugate gradient direction [5] and the optimal

step of descent is used.

5. RESULTS

Real data — Each data contain 23 acquisitions composed of

38 × 128 values. To obtain a over-resolved reconstruction,

we describe our volume with 587264 gaussians distributed on

a cartesian grid 74 × 62 × 128. The spatial (α, β) sampling

step is equal to a quarter slit width, and the spectral dimen-

sion is uniformly sampled between the wavelengths 7.4 and

15.3 µm. The reconstruction is computed after setting the

regularization coefficients µαβ and µλ empirically. Too low a

value for these coefficients produces an unstable method and

a quasi explosive reconstruction. Too high a value produces

images that are visibly too smooth. A compromise found by

trial and error led us to µαβ = 0.3 and µλ = 0.7. The ratio
between µαβ and µλ is also based on our simulation. How-

ever, we cannot compare the regularization coefficients be-

tween the simulated and the real case, since the size of the

problem modifies the weight of the norm in the Eq. (7). Prac-

tically, we take large value for the regularization coefficients,

and we gradually reduce the value up that we are seeing noise.

Our results (Fig. 1(b) ) can be compared with those ob-

tained with (Fig. 1(a) from [6]). A comparison of Fig. 1(a)

and 1(b) clearly shows that our approach provides more re-

solved images that bring out more structures than the conven-

tional approach. Note, in particular, the separation of the two

filaments on the left part of the Fig. 1(b) obtained with our

method, which remains invisible after conventional process-

ing. For comparison, Fig. 1(c) shows the same object ob-

served with the Infrared Array Camera (IRAC) of the Spitzer

Space Telescope which has a better native resolution since

it observes at a shorter wavelength (4.5 µm). Here the same

structures are observed, providing a strong argument in favour

of the reality of the results provided by our method.
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Fig. 1. Object reconstruction φ representing the Horsehead

nebula: (a) image estimated at 11.37 µm by the conventional

method (b) image estimated at 11.37 µm by our method, (c)

image obtained with the Infrared Array Camera IRAC on

board the same telescope having better resolution at 4.5 µm.

Study of resolving power of our approach— This part is de-

voted to numerical quantification of the gain in angular reso-

lution providedwith our method, using the Rayleigh criterion,

which is frequently used by astrophysicists: for the smaller

resolvable detail, the first minimum of the image of one point

source coincides with the maximum of another. In practice,

two point sources with the same intensity and a flat spectrum

are considered to be separated if the minimal flux between

the two peaks is lower than 0.9 times the flux at the peak po-

sitions. The resolution is studied in the β direction only as

this is the direction in which the subslit scan is performed.

Two point sources are injected, at positions β1 and β2,

respectively (see Fig. 3). The corresponding data are simu-

lated, and the reconstruction φ̂(β) is performed. As explained

above, the two point sources are considered to be separated if



φ̂([β1 + β2] /2) ≤ 0.9 × φ̂(β1). The resolution is defined as

the difference δ = β2 − β1 at which the two point sources

start to be separated.

Point sources are simulated for a set of differences δ be-

tween 2.4 and 5.4 arcseconds and simulations are performed

in the configuration of the real data (signal to noise ratio, en-

ergy). A number of reconstructions has been obtained. The

ratio between the values of the reconstructed function at β1

and (β1 + β2)/2 is calculated as a function of the difference

δ between the two peaks. Results are shown in Fig. 2.

The computed resolution is 3.4 arcseconds (see Fig. 2(a))

and 5 arcseconds (see Fig. 2(b)) for our method and the con-

ventional method, respectively.
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Fig. 2. Resolution of our method: the curve represents the ra-

tio of the intensity at one peak to the intensity between the two

peaks as a function of the distance between the peaks in arc-

seconds. The resolution is read at crossing of this curve and

the dotted line (the ratio is 0.9). (a) Results obtained with our

method. (b) Results obtained with the conventional method

.
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Fig. 3. Two peaks reconstruction for different δ : (a) Visual-

isation of the peaks position for δ = 5.4 arcsecond resp., (b)

reconstruction with the conventional method and (c) recon-

struction with our over-resolution method.

6. CONCLUSIONS AND FUTUREWORKS

We have developed an original method for reconstructing the

over-resolved 3D sky from data provided by the IRS instru-

ment. Firstly this method is based on a continuous variable

model of the instrument based on a precise integral physi-

cal description. Secondly, a decomposition of the continuous

variable object over a family Gaussian functions, results in a

linear relationship. Thirdly, an inversion is done in the frame-

work of deterministic regularization based on a quadratic cri-

terion minimized by a gradient algorithm.

First results on real data show that we are able to evidence

spatial structures not detectable using conventional methods.

The spatial resolution is improved by a factor 1.5. This factor

should increase using data taken with a motion between two

successive acquisitions smaller than half the slit width.

Our approach leads to a linear model between the decom-

position coefficients and the data. Our goal is to apply it for

the next generation of infrared to millimeter space observa-

tories (HERSCHEL, JWST, PLANCK, ...), since the limitation

in angular resolution will be a critical issue. For the long

wavelength imager of Herschel (SPIRE), we are currently de-

veloping a full model of the instrument, including the optics,

the bolometer sensors, and the continuous motion of the tele-

scope for large scale mapping. This model will be used to

derive inverted maps. We are also working on the Mid Infra

Red Instrument (MIRI) for the James Webb Space Telescope

(JWST). We estimate high resolution Point Spread Functions

with an unprecedented accuracy using ”microscanning” mea-

surements (sub-pixel scanning of a point-source on the focal

plane) taken during ground-based optical tests Amiaux et al.

2008 ”Development approach and first infrared test results of

JWST/Mid Infra Red Imager Optical Bench”, SPIE, 2008

This is the first step to obtain over-resolution images from

the data which will be sent from the sky by the JWST.
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